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Abstract
We perform Monte Carlo simulation on the dielectric relaxation behaviour
of a model relaxor ferroelectric, based on the Ginzburg–Landau theory of
ferroelectrics with dipole-defect induced random field. The coexistence of
ferroelectric nanoclusters and paraelectric matrix is demonstrated. It is found
that the time-domain spectrum for dielectric relaxation below the ferroelectric
transition point exhibits a multi-peaked pattern rather than the diffusive single-
peaked pattern, indicating the existence of multi-characteristic times for the
dielectric relaxation. The extended multi-peaked time-domain spectrum is
responsible for the diffusive ferroelectric transitions and frequency dispersion
of the dielectric relaxation, usually observed for relaxor ferroelectrics.

1. Introduction

Relaxor ferroelectrics (RFEs) like Pb(Mg1/3Nb2/3)O3 have been receiving continuous
attentions because of their unusual ferroelectric transitions and excellent electromechanical
coupling performances. These unusual behaviours are commonly ascribed to the abnormal
domain structure of RFEs that is different from that of a normal ferroelectric (FE): the
coexistence of FE nanoclusters embedded in paraelectric (PE) matrix below the FE transition
point Tc if definable [1–4]. Consequently, the dielectric relaxation as a function of temperature
T shows diffusive phase transitions and strong frequency dispersion [5]. The FE behaviours
of RFEs are featured with the frequency-dependent hysteresis in the PE state and weak FE
hysteresis below Tc. Therefore, a comprehensive understanding of the two-phase coexistence
structure of RFEs at the nanoscale becomes particularly attractive.
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First of all, because of the two-phase coexistence characters, the dynamic response of
RFEs to external fluctuations (e.g. ac electric field) can be very different from that of normal
FEs, where the long-range FE ordering does not allow sufficient relaxation of local dipoles
alone due to the dipole interaction. However, the nanosized FE clusters in RFEs may respond
to external fluctuations either by local dipole reorientation or through a spatial shift from their
equilibrium positions, or both [6]. In addition, to our common understanding, it is believed that
the size of these clusters exhibits a broad distribution, leading to significant inhomogeneity in
terms of local dipole relaxation and temperature-dependent FE transitions [7]. If each dipole is
treated as a relaxator and no interaction between these relaxators is considered, an RFE usually
offers a very broad monotonic or single-peaked distribution of relaxation time, thus resulting in
diffusive phase transitions and remarkable frequency dependence of the dielectric relaxation.
However, one has reason to argue that the dipoles inside one FE nanocluster are not independent
of one another, and also the inter-cluster interaction could be significant.

Secondly, the dipole glass-like behaviours of RFEs have been extensively studied [5, 8].
The broad distribution of dipole relaxation time is retained at temperature T around Tc. When
T decreases, the FE clusters may grow and coalesce, and finally be frozen at temperature
Tf � Tc, leading to a frozen polar glass-like state to which the well-known Vogel–Fulcher
relationship may apply [7]. This relationship is accepted to be one of the criteria to justify RFEs
from experimental aspects [9, 10]. The Vogel–Fulcher mode above Tf describes the thermally
activated process in a dipole cluster glass system, which can be understood in the framework
of thermal dipole flip (dipole reorientation and spatial shift of FE clusters). For T < Tf, it
is argued that the thermal dipole flip alone no longer makes sense; at least it may not be the
dominant mechanism for RFE behaviours [10].

The above discussion advises us that the time-domain distribution of dielectric relaxation
is a key to our understanding of RFEs. Given the external field fluctuations, the time-domain
distribution of dielectric relaxation, G(log τ, T ), where τ is the relaxation time, determines
uniquely the dielectric relaxation behaviours [11], enabling us to evaluate the dielectric
response of RFEs over the whole time (or frequency) domain and providing us with helpful
information on the dipole configuration. As a consequence, the FE and electromechanical
performance can be predicted in a more reliable manner.

Current theories on RFEs assume that an RFE is composed of an ensemble of relaxators,
which are independent of each other [11]. The distribution, G(log τ, T ), against τ must be
either monotonic or single-peaked over the whole time domain [7]. Nevertheless, for RFEs,
if the dipole glass-like behaviour is of general significance and the picture of the two-phase
coexistence in the nanoscale applies, one may argue that the interactions between these FE
cluster-pairs at T < Tc are no longer negligible. The distribution G(log τ, T ) may be single-
peaked at T > Tc, because the dipoles and clusters are well separated and their interaction is
negligible. However, the distribution at T < Tc may no longer be monotonic or single-peaked
(diffusive) because of the FE cluster essence and significant inter-cluster interactions. One has
reason to argue that G(log τ, T ) at T < Tc is double-peaked or multi-peaked, depending on
the relaxation of interacting FE clusters and the PE matrix phase surrounding these clusters.
Although the single-peaked feature of G(log τ, T ) was indicated experimentally [7, 12, 13],
the evidence is indirect because the data are derived from reconstructed dielectric response
functions. This means that the outcome may not be unique. In other words, there has never been
direct evidence on the pattern of G(log τ, T ) reported so far, although the measured dielectric
dispersion is always diffusive and single-peaked. Nevertheless, some recent experiment
on typical RFE 90PMN-10PT systems by Röhmer’s group [14], based on the nonresonant
dielectric hole-burning technique, detected successfully the time distribution of dynamic
relaxation in response to external pump field, indicating a significant effect of some kinds of
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domain pinning barriers on the dynamic relaxation. It is believed from this experiment that the
interaction between the nanosized domains as subensembles is indeed significant.

In this paper, we will investigate the time-domain distribution G(log τ, T ) for a model
RFE. Our major interest will be in those theoretical models from which G(log τ, T ) can be
directly evaluated. For RFEs, the extensively studied models include the dipole-glass model [5],
the superparaelectric model [8], and the compositional inhomogeneity scheme [15], among
others, which describe the dipole configuration of RFEs in a framework of standard dipole
interactions coupled with internal random field. Unfortunately, up to now a generalized model,
which can reasonably interpret all features of RFEs, seems unavailable to us. Here, we employ
the Ginzburg–Landau model on ferroelectrics that was proposed recently [16] to describe the
relaxation dynamics of RFEs, in which the thermally activated dipole flip is assumed to be the
unique mechanism for dielectric relaxation. This assumption implies that the present model
may not be applicable to cases of T < Tf where the dipole clusters are frozen. In this model, a
special type of dipole defect is considered, which is responsible for the relaxor-like behaviours
in some doped ferroelectrics [17]. These defects can be either impurity atoms distributed
randomly in the lattice or off-centre dopant ions which generate the so-called internal random
fields or random bonds, or even a frustration of the long-range ordering state. This model can
be identified by quite a lot of experimental findings where a normal FE evolves into an RFE
by doping, such as the well known Zr(Hf)-doped BaTiO3 and La(Pr)-doped Pb(Zr, Ti)O3. The
essential roles of the dipole defects in modulating a normal FE into an RFE were investigated
earlier and no details will be given here [18]. We perform Monte Carlo (MC) simulation on
the lattice configuration of electric dipoles and dielectric relaxation behaviours in this defective
FE lattice as a model RFE, from which the time-domain distribution of the relaxation can be
directly evaluated. An interesting finding is that the time-domain distribution of the dielectric
relaxation is indeed multi-peaked instead of single-peaked or diffusive single-peaked. We leave
the dynamic details of the dielectric relaxation, such as frequency dispersion and Vogel–Fulcher
relationship, to be reported elsewhere [19].

2. Model and simulation

The MC simulation is performed on a two-dimensional (2D) L × L lattice with periodic
boundary conditions, where the PE and FE phases take the square and rectangular
configurations, respectively. For a reliable simulation, a 3D lattice should be employed.
However, the computational requirement is extremely big and because we do not focus much on
the critical phenomena associated with the FE phase transitions, all of our simulations will be
performed on a 2D lattice. We once employed a 16 × 16 × 16 cubic lattice for a pre-simulation
and did not find significant difference of the simulated results (e.g. dielectric relaxation) from
those we obtained for a 2D lattice of L ∼ 64. The simulation starts from the Ginzburg–
Landau model and a detailed introduction to this model was given earlier [20]. In short, for
each lattice site, a dipole vector P is assigned with its moment and orientation defined by the
energy minimization. We define P = (Px(r), Py(r)) where Px and Py are the two components
along x- and y-axis, respectively, and consider the contributions from the Landau double-well
potential, the long-range dipole–dipole interaction and gradient energy associated with domain
walls. The long-range elastic energy will not be taken into account [18]. The Landau double-
well potential fL can be written as

fL(Pi ) = A1(P2
x + P2

y ) + A11(P4
x + P4

y ) + A12 P2
x P2

y + A111(P6
x + P6

y ) (1)

where subscript i refers to lattice site i , and A1, A11, A12 and A111 are the energy coefficients,
respectively. For a normal FE, a first-order FE transition will occur if A1 < 0. In the present
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model, the dipole vector is assumed to take one of the four orientations: [1, 0], [−1, 0], [0, 1]
and [0,−1]. The gradient energy for the polarization field is written as below:

fG(Pi, j ) = 1
2 G11(P2

x,x + P2
y,y) + G12 Px,x Py,y + 1

2 G44(Px,y + Py,x)
2 + 1

2 G ′
44(Px,y − Py,x)

2

(2)

where Pi, j = ∂ Pi/∂x j . Parameters G11, G12, G44 and G ′
44 are all positive, indicating that any

dipole fluctuation in either moment or orientation is not favoured. This gradient term prefers
long-range FE ordering. Furthermore, the dipole–dipole interaction is long-ranged and it should
be considered for an inhomogeneous system. In SI units, the energy for site i can be written as

fdip(Pi ) = 1

8πε0χ

∑

〈 j〉

[
P(ri ) · P(r j )∣∣ri − r j

∣∣3 − 3
[
P(ri ) · (ri − r j )

] [
P(r j ) · (ri − r j )

]
∣∣ri − r j

∣∣5

]
(3)

where 〈 j〉 represents a summation over all sites within a separation radius R centred at site i ,
parameters ri , r j , P(ri ) and P(r j ) here should be vectors, and ri and r j are the coordinates
of sites i and j , respectively. In a strict sense, R should be infinite but an effective cut-off at
R = 8 is taken in our simulation [21]. Finally, the electrostatic energy induced by external
electric field is

fE(Pi ) = −Pi · E (4)

where E is external electric field, which takes the [1, 0] orientation in our simulation. The
Hamiltonian for the system is

H =
∑

〈i〉
fL + fG + fdip + fE (5)

where 〈i〉 refers to the summation over the whole lattice.
The dipole defects and thus the internal random field are introduced into the lattice by

imposing random magnitude fluctuations to parameter A1, while the others remain unchanged.
One may refer to earlier reports on detailed discussion [16, 18]. We have

A1(ri ) = A10 + bm · c
A10 = α(T − T 0), α > 0

(6)

where α > 0 is a materials constant, A10 is the coefficient A1 in equation (1), T 0 is the
critical temperature for a normal FE crystal, c takes 0 or 1 to represent a perfect site or a
defective site, and bm is the coefficient characterizing the influence of defects on T 0 and can
be written as bm = −α dT 0(C0)

dC0
, where C0 is the average concentration of defects in the lattice.

We take the case of T = T 0 as an illustration without losing generality. For a lattice site
i , A1(ri ) > 0 if bm > 0, implying suppressed ferroelectricity, and A1(ri ) < 0 if bm < 0,
enhanced ferroelectricity. We define the second defect concentration variable Cp ∈ [0, 1],
which means C0 · Cp · L2 defect lattice sites with bm > 0 and the remaining C0 · (1 − Cp) · L2

sites with bm < 0. The value of bm for a site is randomly taken from range [0.5, 1.0]bM for
bm > 0 and [−0.5,−1.0]bM for bm < 0, with a given bM > 0. We shall simulate the dielectric
relaxation in such an RFE system.

The dielectric relaxation of the RFE is characterized by the dynamic dielectric
susceptibility χ = χ ′ + iχ ′′, defined as [16, 17]

χ ′ = C

NT

〈
N∑

i

1

1 + (ω · τi/ω0)2

〉

χ ′′ = C

NT

〈
N∑

i

ω · τi/ω0

1 + (ω · τi/ω0)2

〉 (7)

where χ ′ and χ ′′ are the real and imaginary parts of χ , 〈 〉 represents the configuration
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averaging, the summation is performed over the whole lattice, ω0 is the polariton frequency
which is a material constant, N = L2 and C is a temperature-independent constant. In our
simulation here, ω0 = 1 is assumed for simplification. Here, time τi at site i depends on both
the local Landau potential and dipole flip among those candidate states at site i , which can be
written as

τi = τ0 · τ ′ = τ00 exp(− fL/kT ) · τ ′ (8)

where τ0 is the characteristic flip time for a non-interacting system, which is actually
determined by the energy barrier referring to the Landau free energy fL at site i , τ00 = 1.0
is the pre-exponential factor which scales the characteristic time for lattice vibration, and τ ′ is
the averaged inverse number of flips for the dipole at site i per Monte Carlo step (mcs). The
detailed procedure of the simulation was reported earlier [18]. In the simulation, bM = 5.0 and
C0 = 0.5 are fixed, and Cp is treated as a variable. The other lattice parameters used in the
simulation were chosen and the dimensionless normalization of them was done following the
works of Hu et al [22] on the dynamics of domain switching in the BaTiO3 system. In addition,
the external electric field E = Em · sin(2πω · t), where Em is the ac signal amplitude and t is
time. We take T 0 = 4.0 in our simulation.

3. Results of simulation and discussion

Figure 1 presents the snapshots of simulated dipole configurations for a normal FE (C0 = 0, left
column) and RFE (C0 = 0.5, Cp = 0.5, right column) at T = 4.0, 2.5 and 1.5, respectively.
It is shown that at T = T 0 = 4.0, the normal FE system shows a homogeneous PE phase
over the whole lattice (figure 1(a)). With defects induced into the lattice, although the spatial
distribution of the defects is random, local FE clusters as indicated by the open circles become
evident at T ∼ T 0, above the FE transition point (Tc < T 0), as shown in figure 1(b), exhibiting
typical RFE features. These features can be more clearly identified at T = 2.5, as shown in
figure 1(d). While the normal FE lattice exhibits typical multi-domained dipole configuration
shown in figure 1(c), the coexistence of FE nanoclusters and a PE matrix is identified. With
further decreasing of T down to 0.5, as shown in figures 1(e) and (f), both the FE and RFE
systems exhibit a multi-domained lattice and not much PE phase in the RFE lattice can be
observed. These features were reported in detail in our previous works [18].

To look at the dielectric relaxation behaviours, we present the dielectric susceptibility (real
and imaginary parts, χ ′ and χ ′′) as a function of T in the insets of figure 2 for different defect
concentrations C0 (Cp = 0.5) at Em = 15.0 and ω = 0.5 mcs−1. For a normal FE (C0 = 0),
a sharp FE transition is observed from the χ ′–T relationship although χ ′ at the transition point
does not reach infinity due to the limited lattice size for simulation. For C0 = 0.5 and 1.0,
one observes clearly a broadening of the transition peaks in both χ ′–T and χ ′′–T curves, a
common feature for RFEs. This broadening becomes very remarkable at C0 = 1.0, indicating
significant diffusive behaviour of the FE transitions. By replotting the data in χ ′–log T and
χ ′′–log T coordinate format, one sees the transition broadening more clearly. In particular,
one may speculate that the χ ′–log T curve at C0 = 0.5 is probably an overlap of a series of
FE transitions occurring consecutively over a temperature range. This is a strong hint for a
multi-peaked distribution of the dielectric relaxation in RFEs.

To confirm this speculation, we evaluate the time-domain distribution of the dielectric
relaxation, i.e. G(log τ, T ), satisfying [7, 11]∫ ∞

0
G(log τ, T ) · d(log τ ) = 1

χ ′(ω, T ) = χ ′
s

∫ T

0
G(log τ, T ) · d(log τ )

(9)
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Figure 1. Snapshot dipole configurations for a normal FE lattice (left column) and RFE lattice
(right column, C0 = 0.5, C p = 0.5) at several temperatures as indicated. T 0 = 4.0. The open
circles enclose the FE nanoclusters.

where χ ′
s is the static susceptibility. The evaluated G(log τ, T ) at several temperatures for a

normal FE (C0 = 0), an RFE with C0 = 0.5 and Cp = 0.0 (referred to as RFE-I), and an
RFE with C0 = 0.5 and Cp = 1.0 (referred to as RFE-II), is presented in figures 3(a)–(e),
respectively. Here, Em = 15 and ω = 0.5 mcs−1.

From figure 3, one observes that for a normal FE, the distribution G(log τ, T ) at each
temperature is single-peaked. At the PE state, the peak profile is very narrow. With T
decreasing into the FE state, the time-domain distribution becomes significantly broadened in
the absolute timescale, and the peak position shifts considerably towards the long-time domain.
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Figure 2. Simulated dielectric susceptibility (real and imaginary parts) as a function of T for various
defect concentrations C0: (a) χ ′–log(T ) curves and (b) χ ′′–log(T ) curves. The insets show the
corresponding χ ′–T and χ ′′–T curves. C p = 0.5, Em = 15.0 and ω = 0.5 mcs−1.

These features are typical for a normal FE where the dipole relaxation is believed to occur
rapidly in a cooperative manner due to the long-range dipole ordering. However, the evaluated
distribution for RFEs shows very different behaviours. At T = 6.0 in the PE state, G(log τ, T )

is single-peaked, but broader than that of the normal FE. We call this a diffusive single-peaked
distribution. The peak position shifts rightward for RFE-I and leftward for RFE-II, with respect
to the peak location of the normal FE (C0 = 0). This is understandable because Cp = 0.0 and
Cp = 1.0 correspond respectively to the cases where the dipole defects suppress and enhance
the ferroelectricity of the lattice, leading to relatively faster and slower dielectric relaxations,
respectively. At T = 4.0, close to the normal FE transition point, RFE-I still retains a narrow
and single-peaked G(log τ, T ), but G(log τ, T ) for RFE-II shows a long tail towards the long-
time domain. When T decreases down to 2.0, deep into the two-phase coexistence region
for both RFE-I and RFE-II, their G(log τ, T ) exhibits a double-peaked pattern with one peak
locating at the similar position as that of the normal FE (peak-I). The other peak (peak-II)
appears in the short-time domain for RFE-I and long-time domain for RFE-II, respectively.
When the two peaks become further broadened and separated from each other with decreasing
T , peak-II eventually smears out and covers a very broad time domain while peak-I remains
relatively sharp at extremely low T = 0.5. This is a clear indication that the FE nanoclusters
are thermally frozen below this temperature.

The above simulations allow us to argue that the time-domain distribution of dielectric
relaxation for RFEs in the two-phase coexistence state does not exhibit a diffusive single-
peaked pattern, but offers a multi-peaked pattern. The underlying physics is apparently ascribed
to the multi-phase coexistence domain structure. Take the two-phase coexistence where the
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Figure 3. Simulated time-domain distribution G(log τ, T ) at different T for lattices of various
defect concentration C0 and C p . Em = 15.0 and ω = 0.5 mcs−1.

FE nanoclusters are similar in size as an example. In a rough sense, the two phases have
their own time distributions and characteristic times (peaked times) of dielectric relaxation,
respectively. With different types of defects and sizes of FE nanoclusters, the evaluated
distribution represents a superposition of the two monotonic or single-peaked distributions. If
the peaks of the two distributions are well separated in the time domain, a double-peaked pattern
becomes inevitable. Surely, if the random field intensity (bm) due to the defect doping is not
strong enough, these peaks are not widely separated from each other, and a simple superposition
of them may give a broad (diffusive) single-peaked distribution, as well believed so far.

In addition to the double-peaked distribution, a multi-peaked distribution is also possible,
depending on the doping effect of RFEs. For a two-component doped RFE where one dopant
leads to ferroelectric weakening and the other to ferroelectric enhancement, we may take
Cp = 0.5 to perform a simulation under the same conditions as those shown in figure 3. The
simulated time distribution at different T is plotted in figures 4(a)–(c) for a normal FE, and two
RFEs with C0 = 0.5 and 1.0, respectively. Again, for the normal FE, the pattern of G(log τ, T )
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Figure 4. Simulated time-domain distribution G(log τ, T ) at different T for lattices of various
defect concentration C0. C p = 0.5. Em = 15.0 and ω = 0.5 mcs−1.

is narrow and single-peaked. In comparison to this, G(log τ, T ) for the RFE with C0 = 0.5
is already broader at T = 6.0 > T 0, and then becomes triple-peaked in shape at T = 2.0
and 0.5, with the middle peak locating at the similar position as that for the normal FE. This
effect can be explained by the fact that C0 = 0.5, i.e. only 50% of the lattice sites are doped
with defects and the others remain unaffected. For the RFE with C0 = 1.0, all lattice sites are
doped with defects; half of them suppress the ferroelectricity and the remaining half enhance it.
The triple-peaked pattern of G(log τ, T ) rather than a double-peaked shape is expected, even
at T = 6.0 > T 0. What should be mentioned here is that at extremely low T the distribution
covers a very extended time domain, so that the delicate structure of the distribution becomes
hardly identified, as shown in figure 4(c) for C0 = 1.0. Furthermore, if the FE nanoclusters are
quite different from one another, and/or for a multi-component RFE, a multi-peaked pattern of
the time-domain distribution becomes evident.

However, most of the RFEs discovered experimentally by chemical doping may
correspond to Cp = 0, i.e. RFE-I, and no RFE-II type material has been reported so
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far. In fact, Zr(Hf)-doped BaTiO3 and La(Pr)-doped Pb(Zr, Ti)O3 are examples of RFE-I
because experiments revealed a clear suppression of the ferroelectricity due to the doping,
characterized by the shift of the FE transition point to the low-T side and weakening of the
ferroelectricity [23, 24]. The defect model employed here allows us a possibility to investigate
the dielectric relaxation behaviours of various types of RFEs into which different kinds of
defects or random fields may be doped or imposed.

Unfortunately, up to now we have no direct experimental evidence on the multi-peaked
time distribution of the dielectric relaxation. Experimentally, G(log τ, T ) is derived by
equation (9) from experimental χ ′–T data at different frequencies. However, due to the limited
ω-range covered, the time domain covered by G(log τ, T ) is limited too. Furthermore, for
those RFEs often studied, like Pb(Mg1/3Nb2/3)O3, Zr(Hf)-doped BaTiO3 and La(Pr)-doped
Pb(Zr, Ti)O3, the diffusive phase transitions occur at relatively high temperature. The thermal
flip times for dipoles or dipole clusters between normal FEs and RFEs may not be very
different in order of magnitude, which does not allow a reliable checking of the multi-peaked
distribution. Nevertheless, it would be possible to check this predicted effect if an RFE with
phase transition point as low as 100 K or even lower can be developed, in which the relaxation
timescale may be as broad as or more than 10–20 orders of magnitude. For such cases, we
expect a multi-peaked time-domain distribution of the dielectric relaxation.

It may be a reasonable argument that due to the intrinsic inhomogeneity of samples for
experiments, the evaluated time distribution from the measured dielectric relaxation remains
single-peaked. However, it can be expected that in 3D lattices the dimensional correlation
among FE nanoclusters could be even more considerable, thus resulting in a multi-peaked
distribution of the dielectric relaxation. In fact, with a high enough ac field, the simulated χ ′–T
and χ ′′–T curves remain diffusive and single-peaked, although the time-domain distribution
is multi-peaked. Figure 5 presents the simulated χ ′–T and χ ′′–T curves for C0 = 0.5 and
Cp = 0.5 at different ω under Em = 15.0. The distribution G(log τ, T ) for this system is
shown in figure 4 (open circles). All typical features for RFEs as observed commonly are
shown in figure 5, including significant frequency dispersion and broad transition regime.

Although a detailed analysis on these simulated features will be presented elsewhere [19],
here we present the fitting to the simulated data by the Vogel–Fulcher relationship, a well-
believed behaviour for RFEs. This relation reads [4]

ω = ω00 · exp

(
− Ea

(Tm − Tf)

)
(10)

where ω00 is the pre-exponential factor, Ea the thermal-activation energy for the dipole clusters,
Tm the peak temperature for χ ′–T curves and Tf the frozen point below which the clusters are
essentially frozen and the thermally driven relaxation becomes negligible.

We evaluate the values of Tm at different ω from figure 5(a) and then plot ln(ω) as a
function of 1/(Tm − Tf) where Tf is treated as a best-fitted parameter. Unfortunately, the best
fitting of the data using a linear ln(ω) − 1/(Tm − Tf) relation cannot be obtained unless Tf = 0
is set. The result is presented in figure 6 by setting Tf = 0. In fact, it is shown that even
for Tf = 0 the data do not yet follow the linear relation in a satisfactory sense, although a
roughly linear dependence between ln(ω) and 1/Tm can be argued. It should be noted that
equation (10) recovers the typical Debye thermal-activation behaviour (Arrhenius law) over the
whole T -range until T = 0 as the low-T limit.

Two possible reasons for this deviation from the Vogel–Fulcher behaviour may be argued.
First, the model employed here for describing the defect-induced RFE only takes into account
the Debye mechanism. The dielectric susceptibility is calculated based on pure thermally
activated relaxation. Because Tf is the temperature below which the dipole relaxation by the
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Figure 5. Simulated dielectric susceptibility (real and imaginary parts) as a function of T for
different ac field frequencies: (a) χ ′–log(T ) curves and (b) χ ′′–log(T ) curves. C0 = 0.5, C p = 0.5
and Em = 15.0.

Figure 6. Peak frequency ω of the dielectric susceptibility as a function of temperature T . C0 = 0.5,
C p = 0.5 and Em = 15.0. See text.

Debye mechanism can no longer be possible, it is thus natural that the frozen temperature
Tf → 0 is shown in figure 6. Secondly, since the dielectric relaxation itself is polydispersive in
timescale, the dielectric susceptibility as a function of T may be viewed as a summation over
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the polydispersive time distribution of the relaxation. Therefore, the present simulation over
a finite lattice size may not be sufficient to check the Vogel–Fulcher behaviour. An extensive
simulation over a much bigger lattice is going on.

It should be pointed out here that the time-domain distribution of the dielectric relaxation
depends also on the distribution of the random field. A monotonic or diffusive single-peaked
distribution is also possible if parameter bm takes a Gaussian-like distribution within [−1, 1]bM .
Similar works were reported earlier [25], although no time-domain distribution of the dielectric
relaxation was given in detail.

4. Conclusion

In conclusion, we have presented a Monte Carlo simulation on the time-domain distribution
of dielectric relaxation for an RFE employing the Ginzburg–Landau theory on ferroelectrics.
By introducing the dipole defects into the FE lattice we have successfully reproduced the
two-phase coexistence of RFEs where FE nanoclusters are embedded in the PE matrix. The
evaluated time-domain distribution of the dielectric relaxation below the FE transitions exhibits
a multi-peaked pattern with multi-characteristic times instead of a monotonic or diffusive
single-peaked pattern, although the dynamic dielectric dispersions remain single-peaked and
diffusive. The multi-characteristic times (peaked times) reflect the significance of local dipole–
cluster interactions in RFEs. The present work sheds light on our conventional understanding
of the relaxation dynamics in RFEs.
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